An Ergodic Action of the Outer Automorphism Group of a Free Group

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Ergodic Action of the Outer Automorphism Group of a Free Group

Theorem. Suppose that G is a connected group locally isomorphic to a product of copies of SU(2) and U(1). If n > 2, then the Out(Fn)-action on Hom(Fn, G)/G is ergodic. We conjecture that Out(Fn) is ergodic on each connected component of Hom(Fn, G)/G for every compact Lie group G and n > 2. When G = U(1), then this action is just the action of GL(n,Z) on the n-torus R/Z, which is well known to b...

متن کامل

The Geometry of the Outer Automorphism Group of a Free Group

Because the curve complex has proved so fruitful for studying the mapping class group, much interest and effort has centered on finding an analogous complex for Out(Fn). Throughout the group discussion, desired properties for such a complex were collected in the statement of the problem given below. Because the choice of these properties depends on what we intend to do with this complex, the gr...

متن کامل

THE AUTOMORPHISM GROUP OF FINITE GRAPHS

Let G = (V,E) be a simple graph with exactly n vertices and m edges. The aim of this paper is a new method for investigating nontriviality of the automorphism group of graphs. To do this, we prove that if |E| >=[(n - 1)2/2] then |Aut(G)|>1 and |Aut(G)| is even number.

متن کامل

The Automorphism Group of a Compact Group Action

This paper contains results on the structure of the group, DiffG(M), of equivariant C-diffeomorphisms of a free action of the compact Lie group G on M. DiffJjíAÍ) is shown to be a locally trivial principal bundle over a submanifold of T>\tf(X), X the orbit manifold. The structural group of this bundle is lf(G, M), the set of equivariant C'-diffeomorphisms which induce the identity on X. E?(G, M...

متن کامل

Congruence Subgroups of the Automorphism Group of a Free Group

Let n ≥ 2 and Fn be the free group of rank n. Its automorphism group Aut(Fn) has a well-known surjective linear representation ρ : Aut(Fn) −→ Aut(Fn/F ′ n) = GLn(Z) where F ′ n denotes the commutator subgroup of Fn. By Aut (Fn) := ρ(SLn(Z)) we denote the special automorphism group of Fn. For an epimorphism π : Fn → G of Fn onto a finite group G we call Γ(G, π) := {φ ∈ Aut(Fn) | πφ = π} the stan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: GAFA Geometric And Functional Analysis

سال: 2007

ISSN: 1016-443X,1420-8970

DOI: 10.1007/s00039-007-0609-8